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FEATURES AND HYPOTHESES
Literature review of hypotheses and potential mechanisms
This section outlines the literature review on the comparative analyses of music and language,
with special emphasis on relevant hypotheses regarding their evolutionary origins. This section
introduces possible mechanisms underlying differences and similarities between song and speech.
We have included this text here for completeness but placed it in the Supplementary Materials
rather than in the “Study aims and hypotheses” section of the main text because, while relevant to
our hypotheses, most are not directly testable in our research design.

Hypotheses for speech-song differences
We predict that the most distinguishing features will be those repeatedly reported in past studies,
namely pitch height and temporal rate of sound production (21, 32–34, 67). Why have these
features emerged specifically for singing? From the viewpoint of the social bonding hypothesis,
slower production rate may help multiple singers synchronize, thus facilitating “formation,
strengthening, and maintenance of affiliative connections” (11). The social bonding hypothesis
does not directly account for the use of high-pitched voice; instead we speculate that this is
related to the loudness perception of human auditory systems. It is known that the loudness
sensitivity of human ears increases almost monotonically until 5kHz (87). Furthermore, the
magnitude of neural response to the frequency change by means of mismatch negativity also
increases as the frequency range goes high in the range of 250-4000 Hz (105). Therefore,
heightening f0 can be considered as conveying pitch information via a channel that is as sensitive
as possible. When it comes to language, its acoustic realization is controlled by formants.
Formants are the resonance of upper harmonics that usually hit the loudness-sensitive frequency
range. Thus, in both song and speech, we interpret that they draw upon high frequencies for
effective communication, and the elevation of fundamental frequencies, typically in singing, is a
consequence of emphasizing pitch contour information. However, in addition to perceptual
factors, higher pitch in singing may also be a consequence of the production mechanism required
for sustaining the pitched voice, especially when keeping subglottal pressure at a high level to
sustain phonation, which may facilitate raising pitch (86).

Interestingly, higher pitch and longer duration are identified as features contributing to
saliency and perceived emotional intensity of sounds (but also other factors such as greater
amplitude and higher spectral centroid, see (106) for a more comprehensive list). This suggests
our features predicted to show differences may originate in non-verbal emotional expression. In
addition, the pattern of higher pitch height and slower sound production rate is also
cross-culturally characteristic of infant-directed speech compared to adult-directed speech (26,
107). Along with other features in infant-directed speech, this difference is argued to play an
important role in linguistic and social development (107).

Pitch discreteness is often considered a key feature of music (13, 24, 25, 35, 37, 83).
However, to our knowledge, there is no well-established way to analyze this property directly
from acoustic signals. In this study, we measure pitch stability as a proxy of pitch discreteness.
Our pitch stability measure quantifies how fast f0 modulates, although we admit this may not fully
account for the characteristics of pitch discreteness. For example, recent studies indicate pitch
discreteness might relate to the ease of memorization (13, 108), but our measurement does not
directly take such effects into account. Based on the pilot analysis (Fig. S2), we confirmed that
pitch stability can demonstrate the expected trend (i.e. more stable pitch in singing). The effect
size can be medium (size corresponding to Cohen’s D of 0.5) at best, but considering the limited
capacity of human pitch control in singing (e.g. imprecise singing (109)), it is plausible that pitch
stability may not matter for the distinction between song and speech as much as pitch height and
temporal rate. Still, we predict this feature is worth testing for cross-cultural differences between
song and speech, particularly given its prominence in previous debate (including Lomax and



Grauer’s definition of song cited in the introduction). In fact, several empirical studies
documented that song usually produces more controlled f0 than speech (110–113).

In relation to the differentiation between song and speech, (84) provided an intriguing
simulation result of how a single vocal communication can diverge into a music-like signal and
speech-like signal through transmission chain experiments. Their experiment was designed to test
the musical protolanguage hypothesis (41) and found that music-like vocalization emerges when
emotional functionality is weighted in the transmission and speech-like vocalization emerges
when referential functionality is necessitated. This result may imply a scenario where singing
behaviour emerged as one particular form of emotional vocal signals conveying internal states of
the vocalizer, though its evolutionary theory has not particularly targeted music (114). In fact, a
melodic character of music is often considered to function in communicating mental states (12,
42), and infant-directed singing acts as the indication of emotional engagement (115). Since our
recordings are solo vocalizations however, our recordings may not display key features
facilitating synchronization of multiple people such as regular and simple rhythmic patterns.
Although this is out of scope of our study, it is intriguing to investigate whether this speculation
also holds in the case of solo music traditions (116, 117).

Hypotheses for speech-song similarities
We predict pitch interval size, timbre brightness and pitch declination will not show marked
differences between song and speech. Amongst these three features, we introduce a novel way of
assessing pitch interval size. Although there is a line of research studying musical intervals based
on the limited notion of interval as defined within the Western twelve-tone equal-tempered scale
(112, 118, 119); but cf. (120, 121), our study treats intervals more generally as a ratio of
frequencies to characterize intervals of song and speech in a unified way.

(122) reported that country singers use similar formant frequencies in both song and
speech. This is consistent with our pilot analysis (Fig. S2). They further argued that the use of
higher formant frequencies (e.g. singer’s formant, see also (123)) in the Western classical music
tradition stemmed from the necessity of the singer’s voice to be heard over a loud orchestral
accompaniment. Similarly, (112) confirmed that speech and song have a similar spectral structure.
Although we can find studies showing higher brightness in singing performed by professional
singers (33, 34, 124, 125), our dataset does not necessarily consist of recordings by professional
musicians and, as in the case of (122), the prominent use of the high formant frequencies in
singing may depend on musical style (but see (116) for the role of timbre played in personal
music tradition). However, we would like to note that other aspects of timbre such as noisiness
(spectral flatness) can potentially be different between song and speech (38).

Cross-species comparative studies identified that the shape of pitch contours is regulated
by voice production mechanisms (28, 68). Since both humans and birds use respiratory air
pressure to drive sound-producing oscillations in membranous tissues (28), their pitch contours
tend to result in descending towards the end of the phrase. Although previous studies only
compared pitch contours of human music (instrumental and vocal) and animal song, we predict
the same pattern can be found in human speech since it still relies on the same motor mechanism
of vocal production. More precisely, pitch declination is predicted to happen when subglottal
pressure during exhalation can influence the speed of vocal fold vibration; the high pressure
facilitates faster vocal fold vibration, and low pressure therefore makes the vibration relatively
slower. Declarative speech is also subject to this mechanism (126, 127).

Features
We will compare the following six features between song and speech for our main confirmatory
analyses:

1) Pitch height (fundamental frequency (f0)) [Hz],



2) Temporal rate (inter-onset interval (IOI) rate) [Hz],
3) Pitch stability (-|Δf0|) [cents/sec],
4) Timbral brightness (spectral centroid) [Hz],
5) Pitch interval size (f0 ratio) [cents],

- Absolute value of pitch ratio converted to the cent scale.
6) Pitch declination (sign of f0 slope) [dimensionless]

- Sign of the coefficient of robust linear regression fitted to the phrase-wise f0
contour.

For each feature, we will compare its distribution in the song recording with its
distribution in the spoken description by the same singer/speaker, converting their overall
combined distributions into a single scalar measure of nonparametric standardized difference (cf.
Fig. 8).

We selected these features by reviewing what past studies focused on for the analysis of
song-speech comparison and prominently observed features in music (e.g. (25, 26, 32, 34, 83) see
the “Literature review of hypotheses and potential mechanisms” section for a more
comprehensive literature review). Here, f0 , rate of change of f0, and spectral centroid are extracted
purely from acoustic signals, while IOI rate is based purely on manual annotations. Pitch interval
size and pitch declination analyses combine a mixture of automated and manual methods (i.e.
extracted f0 data combined with onset/breath annotations).

The details of each feature can be found below. Note that some theoretically relevant
features we explored in our pilot analyses (especially the “regular rhythmic patterns” from Lomax
& Grauer’s definition of song quoted in the introduction) proved difficult to quantify using
existing metrics and thus are not included in our six candidate features (cf. Fig. S9 for pilot data
and discussion for potential proxies that we found unsatisfactory such as “IOI ratio deviation” and
“pulse clarity”).

Pitch height (f0):
We created a graphical user interface application with the following extraction process: 1) create
the time-frequency representation of the audio signal using the fractional superlet transform (128,
129); 2) a user specifies the set of points (beginning, end, upper and lower bound of frequency,
and optional intermediate point(s) to be included in the contour) on the time-frequency plane to
constraint the search region of f0; 3) estimate an f0 contour using the Viterbi algorithm (130). It is
also possible to manually draw/delete/modify the contour if the f0 is deemed not reliably estimated
automatically due to severe interference by noise. The frequency resolution is 10 cents with 440
Hz = 0 (one octave is 1200 cents), and the time resolution is 5 ms.

Temporal rate (Inter-onset interval [IOI] rate):
Inter-onset interval rate is measured by first taking the difference between adjacent onset
annotation times or onset and break annotation times and then taking that reciprocal. Our proxy
for temporal rate is the inter-onset interval of consecutive P-centers (perceptual centers;
(131–136)), which is approximately similar to, but not identical to, the rate of linguistic and
musical acoustic units (e.g. syllables, notes). Onset is a perceptual center determined by the
person who made the recording.

Pitch stability (-|Δf0|):
The rate of change of f0 is the negative absolute value of the numerical differentiation at each
sampling point of the f0 contour. The negative sign is used so that higher values indicate greater
pitch stability. We use (137) wavelet method with a first-order derivative of Gaussian to derive
this because it is robust to noisy f0 contours such as the ones in our pilot data. We use 20 ms as the



standard deviation parameter of the first-order derivative of Gaussian to smooth the noise. This
corresponds to the scaling factor of the wavelet function.

Pitch interval size (f0 ratio) [cent]:
Pitch interval is usually expressed as the ratio of pitch of two notes. We generalize this concept as
follows. Firstly, segment an f0 contour with the onset and break times. Secondly, take the outer
product of the antecedent segmented f0 contour and the reciprocal of the consequent f0 contour.
Here, rather than estimating a single representative pitch from each segment, we take exhaustive
combinations of the ratio of f0 values between adjacent segments and evaluate the intervals as a
distribution. This approach allows us to quantify intervals on both musical and linguistic acoustic
signals. We calculate this outer product from each pair of adjacent segmented f0 contours and
aggregate all results as the pitch interval of the recording. However, one drawback of this method
is that the number of data points tends to become large due to taking outer products, though it can
be mitigated by lengthening the sampling interval of f0. Fig. S5 shows a schematic overview of
our approach.

Timbral brightness (spectral centroid):
Spectral centroid is computed by obtaining a power spectrogram using 0.032 seconds Hanning
window with 0.010 seconds hop size. The original sampling frequency of the signal is preserved.
Please note silent segments during breathing/breaks are also included. However, the majority of
the recordings contain a voice (or instrument), so the influence from silent segments should be
minimal. Although we tried using an unsupervised voice activity detection algorithm by (138), it
was challenging to assess how much the failure of detection can impact the measurement of the
effect size. The unsupervised algorithm was chosen to avoid the assumption of particular
languages and domains as possible since we deal with a wide range of language varieties and
audio signals of both music and language domains, which is usually beyond the scope of voice
activity detection algorithms in general. Another limitation is that the measurement of spectral
centroid can be affected by noise due to poor recording environment or equipment. However, our
study focuses on the difference in terms of the relative effect in spectral centroid in two
recordings (expected to be recorded in the same environment/equipment/etc.), and we confirmed
that the difference in spectral centroid itself is not markedly influenced by noise if the two
recordings are affected by the same noise.

Pitch declination (sign of f0 slope):
Pitch declination is estimated in the following steps: First, a phrase segment is identified by the
onset annotation after the break annotation (or the initial onset annotation for the first phrase) and
the first break annotation following that. Secondly, an f0 contour is extracted from that segment.
We treat f0s as response variable data and correspondence times as dependent variable data. If
there are frames where f0 is not estimated, we discard that region. Finally, we fit a linear
regression model with Huber loss and obtain the slope. If the pitch contour tends to have a
descending trend at the end of the phrase, we expect that the slope of the linear regression tends to
be negative. MATLAB’s fitlm() function was used to estimate the slope. Fig. 3 illustrates linear
models fitted to each phrase.

Exploratory features
The summary of the additional features that will be examined in the exploratory analysis is as
follows.

7) Rhythmic regularity (IOI ratio (39) deviation) [dimensionless],



- This is calculated by the absolute difference between the observed IOI ratios and
the nearest mode estimated from the observed IOI ratios. Similar IOI ratios are
repeatedly observed if there is regularity in rhythm patterns, and IOI ratios form
clusters. We quantify such regularity by measuring how much the IOI ratios are
dispersed within clusters. This idea is similar to measuring the variance of the
within-cluster. In this analysis, we apply modal clustering, that the cluster
centroids are modes of density of data. Various methods for density modes
(equivalently zero-dimensional density ridges or degree zero homological features)
estimation have been recently proposed (139–147). Here, we adopted techniques
of topological data analysis. In particular, we use the mean-shift algorithm (143) to
detect the modes. Gaussian kernels are used and we choose to obtain a bandwidth
parameter using (148)’s method that selects a bandwidth from the range within
which the Betti number (number of modes in this case) is most stable (148, 149).
Note that this is not the only way, and other criteria also exist (141, 145) for the
bandwidth selection from the viewpoint of topological features. The search space
of bandwidth is set to as a minimum following (145). The maximum
bandwidth value is set to Silverman’s rule-of-thumb (150) since this bandwidth
selection is usually considered oversmoothing (151), and this idea was previously
also used for ridge detection analysis (152). Removing low density data points
(outliers) to infer the persistent homology features is recommended (141), so we
set the threshold to eliminate data points, that is

where is a kernel density
function with the bandwidth parameter and is a kernel density estimate
using all data points. This threshold removes samples from density created by a
few samples; equivalent to density less than 2 data points or less than 1% of the
number of data points. Fig. S12 illustrates our approach.

8) Phrase length (duration between two breaths/breaks) (onset-break interval) [seconds],
- It is defined as an interval between the first onset time after a break time (or the

beginning onset time) and the first break time after the onset time, roughly
corresponding to the length of a musical phrase or spoken utterance.

9) Pitch interval regularity (f0 ratio deviation) [cents],
- Like the IOI-ratio deviation, this is calculated by the absolute difference between

the observed f0 ratios and the nearest mode. The method for calculating this feature
is identical to the IOI ratio deviation, but for frequency rather than for time..

10) Pitch range (phrase-wise 90% f0 quantile length) [cents],
- The phrase is an interval as defined in 8) Phrase length. The sample quantile length

of f0 within each phrase is extracted.
11) Intensity (short–term energy) [dimensionless],

- We measure the energy of the acoustic signal as a rough proxy of loudness
although loudness is a perceptual phenomenon and these two are not necessarily
equal. The short-term energy is the average of the power of the signal within a
rectangular window whose length is 25 ms. We slide this window every 12.5 ms to
collect the short-term energies of the recording. In order to avoid including the
unvoiced segments, the energy is calculated from the samples within IOIs or
onset-break intervals. Since the relative effect is invariant with the
order-preserving transformation, we do not apply a logarithm though the feature
name is intensity. There are some limitations in this feature. One limitation is that
recording is not strictly controlled. However, assuming the collaborator follows the
protocol (e.g. keep the same distance between microphone and mouth/instrument
and use the same recording device and recording environment across recordings),



we assume the intensity of the recordings within each collaborator can be roughly
compared. Another limitation is that the recording method is not unified across the
collaborators. Therefore, even if there are the same level of differences in sound
pressure level of singing and speech among the collaborators, the effect sizes to be
calculated can be different. More precise control of recording conditions would be
necessary for more accurate measurement of the difference in loudness in future
studies.

12) Pulse clarity [dimensionless],
- Pulse clarity is calculated using MIRToolbox V1.8.1 (153).

13) Timbre noisiness (spectral flatness (154, 155)) [dimensionless]
- Spectral flatness is measured at each acoustic unit, namely inter-onset intervals and

onset-break intervals, as in (38).

SUPPLEMENTARY METHODS
Recording and segmentation protocol
In order to keep the quality and consistency of the recordings, we created a detailed recording
protocol for coauthors to follow when recording (cf. “Recording protocol” section). The protocol
gives detailed instructions for things like how to interpret the instructions to choose a “traditional
song in their 1st or heritage language” for cases where they are multilingual; logistics such as
recording duration (minimum 30s, maximum 5 minutes for the song and the spoken description),
file format, and how to deliver recordings to a secure email account monitored by a Research
Assistant who was not a coauthor on the manuscript. All recordings were made by the coauthors
themselves singing/speaking/playing instruments.

In addition to the recordings, we collected the texts of recordings which were segmented
into acoustic units (e.g., notes, syllables) according to their perceptual center (P-center)
(131–136). Here, the P-center is defined as the moment sound is perceived to begin, and the
P-center is considered to be able to capture the perceptual experience of rhythm (132, 156). The
segmentation by the P-center was expected to reflect the vocalizer’s perception of the beginning
of acoustic units. Here, we used acoustic units as a general term that a listener perceives as a unit
of sound sequences such as syllables and notes. However, some languages have their own
linguistic unit (e.g. mora in Japanese) and music as well (Fushi 節 in Japanese traditional folk
songs). It is challenging to identify the beginnings of acoustic units for different domains (e.g.,
language and music), musical traditions, and languages comprising different phonemic and
suprasegmental properties. For example, the location of the P-center in speech is known to be
dependent on various factors such as the duration of phonemic elements (e.g. vowel, consonant)
and the type of the syllable-initial consonant (156–159). Therefore, rather than building an
objective definition of sound onset, we ask each participant to reflect on their interpretation of
acoustic units of their song and speech focusing on the P-center. Segmented texts are used to
create onset and breath annotations with SonicVisualizer software ((160);
https://www.sonicvisualiser.org/) which will be the base of some features. SonicVisualizer was
chosen because it provides a simple interface to add a click sound to the desired time point in the
audio to reflect the P-center. Those annotations were created by the first author (Ozaki) because
the time required to train and ask each collaborator to create these annotations would not have
allowed us to recruit enough collaborators for a well-powered analysis.

In order to maximize efficiency and quality in our manual annotations, we adopted the
following 3-step procedure:

1) Each coauthor sent a text file segmenting their recorded song/speech into acoustic units
and breathing breaks (see “Recording protocol” for examples).

https://www.sonicvisualiser.org/


2) The first author (Ozaki) creates detailed millisecond-level annotations of the audio
recording files based on these segmented texts. (This is the most time-consuming part of
the process).

3) Each coauthor then checked Ozaki’s annotations (by listening to the recording with
“clicks” added to each acoustic unit) and corrected them and/or had Ozaki correct them as
needed until the coauthor was satisfied with the accuracy of the annotation.

Language sample
Inclusion criteria
All audio recordings analyzed are made by our group of 81 coauthors recording ourselves
singing/speaking in our 1st/heritage languages, which span 23 language families (Fig. S1) [NB:
This was later reduced to 75 coauthors as described in the main text. Here we have preserved the
wording of the original Stage 1 Protocol awarded In Principle Acceptance by Peer Community In
Registered Reports (2)]. Coauthors were chosen by opportunistic sampling beginning from
co-corresponding author Savage’s network of researchers, a public call to the email list of the
International Council for Traditional Music (July 15 2022 to ictm-l@ictmusic.org; cf. “Open call
for collaboration to the International Council for Traditional Music (ICTM) email list.” section),
and recruitment at various conferences/symposia (International Council for Traditional Music,
July 2022, Portugal; Joint Conference on Language Evolution, Sep 2022, Japan; Interdisciplinary
Debates on the Empirical Aesthetics of Music series, Dec 2021, online; Social Bridges, Jan 2022,
online; European Society for Cognitive Psychology, Feb 2022; AI Music Creativity, Sep 2022,
online), with additional snowball recruitment from some collaborators using their own networks.
Most authors are multilingual speakers who can speak English, though a few are multilingual in
other languages (e.g., Portuguese, Japanese) with translations to and from English done by other
coauthors as needed.

The set of linguistic varieties in this study represents a considerable portion of the world
cross-linguistic variability in the main aspects that could conceivably play a role in shaping
speech-song similarities/variabilities across languages ((48); https://wals.info/languoid):

● Head-complement order: languages with basic head-complement order (e.g. English),
languages with basic complement-head order (e.g. Bengali)

● Vowel inventory size: moderate (e.g. Japanese), large (e.g. German)
● Consonant inventory size: small (e.g. Ainu), moderately small (e.g. Guaraní), average (e.g.

Greek), moderately large (e.g. Swahili), large (e.g. Ronga)
● Consonant/vowel ratio: low (e.g. French), moderately low (e.g. Korean), average (e.g.

Spanish), moderately high (e.g. Lithuanian), high (e.g. Russian)
● Potential syllable structures: simple (e.g. Yoruba), moderately complex (e.g. Catalan),

complex (e.g. Kannada)
● Word-prosodic systems: stress-accent systems (e.g. Italian), pitch-accent systems (e.g.

Swedish), tonal systems (e.g. Cantonese)
● Stress location: initial (e.g. Irish), postinitial (e.g. Basque), ante-penultimate (e.g.

Georgian), penultimate (e.g. Polish), final (e.g. Balinese)
● Rhythm type: iambic (e.g. Mapudungun), trochaic (e.g. Hebrew)
● Complexity of tone systems: simple (e.g. Cherokee), complex (e.g. Thai)

Exclusion criteria and data quality checks
If coauthors chose to withdraw their collaboration agreement at any point prior to formal
acceptance after peer review, their recording set would be excluded (cf. “Collaboration agreement
form” section). If their recording quality was too poor to reliably extract features, or if they failed
to meet the formatting requirements in the protocol, we would ask them to resubmit a corrected

mailto:ictm-l@ictmusic.org
https://ictmusic.org/ictm2022/programme
https://sites.google.com/view/joint-conf-language-evolution/home?authuser=0
https://www.aesthetics.mpg.de/en/the-institute/news/news-article/article/idea-lectures-with-patrick-savage.html
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https://2022.aimusiccreativity.org/
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recording set. In order to keep ourselves as blind as possible to the data prior to In Principle
Acceptance and analysis, we asked coauthors to send only their segmented texts, not their audio
recordings, to coauthors Ozaki & Savage to conduct formatting checks (e.g., ensuring that
coauthors had understood the instructions to make all recordings in the same language and to
segment their sung/spoken texts into acoustic units), so that we would not need to access the
audio recordings until after In Principle Acceptance.

After we had already begun this process, we decided to add an additional layer of
formatting and data quality checks by hiring a Research Assistant (RA) who is not a coauthor to
create and securely monitor an external email account where authors could send their audio
recordings. This allowed us to prevent data loss (e.g., collaborators losing computers or
accidentally deleting files), as well as allowing us to have the RA confirm that recording quality
was acceptable, recordings met minimum length requirements, etc. The RA would not share the
account password needed to access these recordings with us until we had received In Principle
Acceptance.

Break annotation
Break was defined as the end of a continuous sequence of sounds before relatively long pauses.
Breaks were used to avoid creating inter-onset intervals that did not include sounds. For vocal
recordings, that would typically constitute when the participant would inhale. In the case of
instrumental recordings, how to determine break points between instrumental phrases was up to
the person who made the recording, but it was expected that pauses would be indicated during
sound production.

Robustness analyses
Exclusion of data generated after knowing the hypotheses
One distinctive aspect of this study is that the authors ourselves generated the data for the
analysis. Traditionally, personnel who provide data are blinded from the hypotheses to avoid
biases where researchers (consciously or unconsciously) collect data to match their predictions.
Here, we attempted to control for bias by withholding from analysis of audio data until we
confirm the in-principle acceptance of this manuscript. We collected most recordings in a way
that coauthors did not have access to each others’ audio recordings until In Principle Acceptance
(IPA) of this Registered Report, so that hypothesis formation and analysis methodology are
specified a priori before accessing and analyzing the audio recordings. Still, some data were
generated from the core team who planned and conducted the pilot analyses and thus already
knew most hypotheses before we decided this issue needed to be controlled for. Data from these
authors may possibly include some biases due to knowing the details of the study (e.g., we might
have consciously or unconsciously sung higher or spoke lower than we normally would to match
our prediction that song would use higher pitch than speech). Therefore, we tested the robustness
of our confirmatory analysis results by re-running the same analyses after excluding recordings
provided by coauthors who already knew the hypotheses when generating data. Our confirmatory
analyses tested the direction of effect sizes, so applying the same tests allows us to check if that
holds under varying conditions. In case the results of this analysis and the original confirmatory
analysis do not match, we interpret our results as not robust (whether due to potential
confirmation bias or to other sampling differences) and thus not draw strong conclusions
regarding our confirmatory hypotheses.

Potential dependency caused by language family lineage
Another potential bias in our design is the unbalanced sample of languages due to our
opportunistic sampling design. Related languages are more likely to share linguistic features due
to common descent, and sometimes these features can co-evolve following lineage-specific



processes so that the dependencies between the features are observable only in some families but
absent in others (161). Thus, it is possible that our sample of speakers/singers may not represent
independent data points. There is also some potential that musical and linguistic features may be
related, although past analyses of such relationships between musical features and linguistic
lineages have found relatively weak correlations (162–164). While our study included a much
more diverse global sample of languages/songs than most previous studies, like them, our sample
is still biased towards Indo-European and other larger languages families, which might bias our
analyses. To determine whether the choice of language varieties affects our confirmatory
analyses, we re-ran the same confirmatory analyses using multi-level meta-analysis models
(linear mixed-effects models; (165)) with each recording set nested in the language family. We
performed model comparison using the Akaike Information Criterion (AIC) (166) for the original
random-effects model and the multi-level model. The model having the lower AIC explains the
data better in terms of the maximum likelihood estimation and the number of parameters (167),
although critical assessment of information criteria and model selection methods in light of
domain knowledge is also important (168). If the choice of model technique qualitatively changes
the results of our confirmatory hypothesis testing, we conclude that our results depend on the
assumption of the language dependency.

Exploratory analysis to inform future research
We are interested in a number of different questions that we cannot include in our main
confirmatory analyses due to issues such as statistical power and presence of background noise.
However, we planned to explore questions such as the following through post-hoc exploratory
analyses, which could then be used to inform confirmatory analyses in future research:

More acoustic features:
We also planned to explore other features in addition to the specified five features to investigate
what aspects of song and speech are similar and different. Supplementary Fig. S9 shows the
analysis using additional features.

Relative differences between features:
Our confirmatory analysis formally tested whether a given feature is different or similar between
song and speech, but will not directly test whether some features are more or less good than
others at distinguishing between song and speech across cultures. To explore this question, we
planned to rank the magnitude of effect sizes to investigate the most differentiating features and
most similar features among the pairs of song and speech.

Music-language continuum:
To investigate how music-language relationships vary beyond just song and spoken description,
we planned to conduct similar analyses to our main analyses but adding in the other recording
types shown in Fig. 1 made using instrumental music and recited song lyrics.

Demographic factors:
Most collaborators also volunteered optional demographic information (age and gender), which
may affect song/speech acoustics. Indeed, Fig. S3 suggests that pitch height differences between
males and females are even larger than differences between song and speech. We planned to
explore such effects for all relevant features.

Linguistic factors:
We also planned to investigate whether typological linguistic features affect song-speech
relationships (e.g., tonal vs. non-tonal languages; word orders such as Subject-Verb-Object vs.



Subject-Object-Verb languages; “syllable-timed” vs. “stress-timed” languages and related
measurements of rhythmic variability (nPVI; (56)), etc.

Other factors:
In future studies, we also aim to investigate additional factors that may shape global diversity in
music/language beyond those we can currently analyze. Such factors include things such as:
-functional context (e.g., different musical genres, different speaking contexts)
-musical/linguistic experience (e.g., musical training, mono/multilingualism)
-neurobiological differences (e.g., comparing participants with/without aphasia or amusia)

Reliability of annotation process:
Each of Ozaki’s annotations are based on segmented text provided by the coauthor who recorded
it, and Ozaki’s annotations were checked and corrected by the same coauthor, which should
ensure high reliability and validity of the annotations. However, in order to objectively assess
reliability, we planned to repeat the inter-rater reliability analyses shown in Fig. S6 on a subset of
the full dataset annotated independently by Savage without access to Ozaki’s annotations. Like
Fig. S6, these analyses focused on comparing 10s excerpts of song and spoken descriptions,
randomly selected from 10% of all recording sets (i.e., 8 out of the 81 coauthors, assuming no
coauthors withdraw). Ozaki’s annotations corrected by the original recorder were used as the
“Reference” datapoint as in Fig. S6, and Savage’s annotations (also corrected by the original
recorder) correspond to the “Another annotator” data points in Fig. S6. Note however that we
predicted that Savage’s corrected annotations are more analogous to the “Reannotation” data
points in Fig. S6, since in a sense our method of involving the original annotator in
checking/correcting annotations is analogous to them reannotating themselves in the pilot study.

Exploring recording representativeness and automated scalability:
Because our opportunistic sample of coauthors and their subjectively selected “traditional” songs
are not necessarily representative of other speakers of their languages, we planned to replicate our
analyses with Hilton et al. (26)’s existing dataset, focusing on the subset of languages that can be
directly compared. This subset of languages consists of 5 languages (English, Spanish, Mandarin,
Kannada, Polish) represented by matched adult-directed song and speech recordings by ~240
participants (cf. Hilton et al.’s (26) Table 1).

Because our main analysis method requires time-intensive manual or semi-manual
annotation involving the recorded individual that would not be feasible to apply to Hilton et al.’s
(26) dataset, we instead relied on our reanalysis of Hilton et al.’s (26) data on purely automated
features. We then re-analyzed our own data using these same purely automated features. This
allowed us to explore both the scalability of our own time-intensive method using automated
methods, and directly compare the results from our own dataset and Hilton et al.’s (26) using
identical methods.

Fig. S10 demonstrate this comparison using pilot data for one feature (pitch height) based
on a subset of Hilton et al.’s (26) data that we previously manually annotated (37), allowing us to
simultaneously compare differences in our sample vs. Hilton et al.’s (26) sample and automated
vs. semi-automated methods. Even though this analysis focuses on a feature expected to be one of
the least susceptible to recording noise (pitch height), our pilot analyses found that these were
mildly sensitive to background noise, such that purely automated analyses resulted in systematic
underestimates of the true effect size as measured by higher-quality semi-automated methods
(Fig. S10). While our recording protocol (cf. “Recording protocol” section) ensures minimal
background noise, Hilton et al.’s (26) field recordings were made to study infant-directed
vocalizations and often contain background noises of crying babies as well as other sounds (e.g.,
automobile/animal sounds; cf. Fig. S11), which may mask potential differences and make them



not necessarily directly comparable with our results. This supports the need to compare our results
with Hilton et al.’s (26) using both fully-automated and semi-automatedly extracted features to
isolate differences that may be due to sample representativeness and differences that may be due
to the use of automated vs. semi-automated methods.

Applying zero-cell correction to the signs of f0 slopes
Signs of f0 slopes are dichotomous outcomes (i.e. positive or negative). Therefore, statistical
analysis requiring variance becomes uncomputable, including our hypothesis testing using the
Gaussian random-effects model meta-analysis, when all values are positive or negative. Zero-cell
correction is a workaround to handle such data ((61); see also “Alternative analysis approaches
for pitch declination (hypothesis 6)” section in the main texts). By employing this method, we
artificially appended a plus and minus sign to each of the signs of f0 slopes from singing and
spoken description recordings when estimating standard errors of relative effects if needed (e.g.
[-1, -1, -1] → [-1, -1, -1, 1, -1] for the case of 3 f0 slopes). In zero-cell corrections, 0.5 is added to
all cells of the 2×2 table. Our analysis is not based on count data, so we cannot exactly follow this
correction. However, adding plus and minus signs to the outcome of both singing and spoken
description recordings has a similar effect. Our additional procedure is similar to zero-cell
corrections but adding 1 instead of 0.5 to all cells.

Computation of average f0 contours of Fig. 7
The extracted f0 contours from recordings were normalized to the length of 128 samples using
interpolation by Fourier transform and resampling (169, 170). The implementation by the
MATLAB function interpft() is used. Besides, the frequencies of extracted f0 contours were
standardized. Missing data from unvoiced segments of f0 contours were excluded. The blue lines
represent averaged f0 contours, and the black lines indicate 95% confidence intervals assuming the
frequencies at each normalized sampling point were distributed normally.

Computation of permutation importance
We computed permutation importance by randomly splitting 75 recording sets into the training set
(n = 67) and test set (n = 8, 10% held-out) to fit the model and to evaluate the importance of
features in the classification task, and repeated the same process 1024 times. The mean values of
the feature, which are plotted in Fig. 5, were used as data after normalization. The average of
1024 realizations of permutation importance values was reported here as the final output.
Incidentally, in our experiments, all classifiers achieved average accuracy and F1 score higher
than 90 (cf. Table S5).

MANIPULATION OF FEATURES TO DEMONSTRATE OUR DESIGNATED SESOI
(COHEN’S D = 0.4)
Following Brysbaert’s (93) recommendation, we use the relative effect corresponding to 0.4 of
Cohen’s D as the SESOI for our hypothesis testing. Although the choice of 0.4 of Cohen’s D is
somewhat arbitrary, we empirically measured how much such differences correspond to the
physical attribute of audio using our pilot data focusing on pitch height and temporal rate. For
each pair of singing and spoken description recording, we first measured the relative effect (3rd
column: Relative effect (pre)). Then, we manipulated the corresponding feature of the song to
result in a relative effect equal to 0.61 (corresponding to 0.4 of Cohen’s D) and 0.5
(corresponding to no difference, 0.0 of Cohen’s D). Specifically, we shifted down the entire f0 for
pitch height and slowed down the playback speed for temporal rate. The 4th and 5th columns
show actual scale factors identified at each recording and feature. For example, the first row
indicates the f0 of the sung version needed to be shifted 730 cents downward to manipulate the



difference in this feature between singing and spoken description to be as small as our proposed
SESOI of Cohen’s D = 0.4. Similarly, the sixth row indicates the IOIs of singing needed to be
multiplied by 0.472 (i.e., each sung note sped up to be 47.2% as short as the original duration) to
make no difference against the spoken description recording, meaning the playback speed of
singing should be over 2x faster than the original recording. Although there are only 5 recording
pairs and this measurement does not directly provide the justification for using 0.4 of Cohen’s D,
we can see how the current SESOI threshold corresponds to the physical attribute of audio by
comparing the 4th and 5th columns (106 cents for pitch height and factor of 0.091 for temporal
rate in average), which to us authors seem like reasonable borderlines for listeners to notice the
change in audio content. The corresponding audio examples are available in our OSF repository
(https://osf.io/mzxc8/files/osfstorage/638491c81daa6b1394759086).

PILOT DATA ANALYSIS
We collected recordings from five coauthors for pilot data analysis Each speaks a different 1st
language: English, Japanese, Farsi, Marathi, and Yoruba. Please note that coauthors who
contributed pilot data also recorded separate recording sets to be used in the main confirmatory
analysis to ensure our main analyses are not biased by reusing pilot data. Fig. S2 uses the analysis
framework shown in Fig. 8 to calculate relative effect sizes for all five recording sets for all six
hypothesized features. Note that our inferential statistical analysis uses the relative effects, but we
translate these to Cohen’s D in Fig. S2 for ease of interpretability, but technically our analysis is
not the same as directly measuring Cohen’s D of the data.

The primary purpose of the pilot analysis is to demonstrate feasibility and proof of
concept, but we also used it to help decide on our final set of six features to focus on for our
confirmatory analyses (Fig. S2). A full pilot analysis including additional features that we decided
not to test is shown in Fig. S9. However, while some of our hypotheses appear to be strongly
supported by our pilot data (e.g., song consistently appears much higher and much slower than
speech, and timbral brightness appears consistently similar), others seem more ambiguous (e.g.,
pitch stability and pitch interval size show similar, weak trends although we predict pitch stability
to differ but pitch interval size not to differ). In these cases, we prioritized our theoretical
predictions over the pilot data trends, as effect sizes estimated from pilot data are not considered
reliable (93), while ample theory predicts that song should use more stable pitches than speech
(83) but sung and spoken pitch interval size should be similar (28). However, we would be less
surprised if our predictions for pitch stability and pitch interval size are falsified than if our
predictions for pitch height and temporal rate are. Summary statistics visualizing the data
underlying Fig. S2 in a finer-grained way are shown in Fig. S3.

In addition to the above main pilot analysis, we conducted two additional pilot analyses to
validate our choice of duration of recording and annotation procedure. First, we investigated how
estimated effect sizes vary with length of recording excerpt analyzed (Fig. S4). We concluded that
20 seconds approximately optimizes the tradeoff between accuracy of effect size estimation and
the substantial time required to manually annotate onsets (roughly 10-40 minutes per 10 seconds
of recording, with spoken description often taking several times longer to annotate than sung,
instrumental, or recited versions).

Second, we had each of the five coauthors who annotated pilot data for their own language
re-annotate a 10-second excerpt of their own recording (to determine intra-rater reliability) and
then also annotate a 10-second excerpt of recordings in all other languages (to determine
inter-rater reliability). They first did this once without any segmented text provided, and then
corrected this after being provided with segmented texts. We then compared all these recordings
against automated algorithms widely used in speech analysis (40, 59) to determine reliability of
automated methods (Fig. S6).

https://osf.io/mzxc8/files/osfstorage/638491c81daa6b1394759086


The results of human-human comparisons were somewhat ambiguous, but overall
suggested that (1) between-annotator differences in onset and break annotation are negligible even
for different languages (provided they are provided with segmented texts), (2) within-annotator
randomness of annotation is also negligible, and (3) effect sizes based on the annotation provided
by automated methods can be significantly different from human annotations. Note that Fig. S6
only compares temporal rate and pitch interval size, since most other features did not require
manual annotations, while pitch declination was not analyzed because the 10-second excerpts
were too short to have enough phrases to evaluate. Although our validation suggests the
superiority of manual annotation, it would be desirable to increase its efficiency in the future via
semi-automated methods or crowd-sourcing (though there will likely be tradeoffs between data
quality and quantity (171)).

STATISTICAL MODELS AND POWER ANALYSIS PROCEDURE
Statistical models
The Gaussian random-effects model used in meta-analysis is (97, 98)

where is the effect size (or summary statistics) from the th study, is the
study-specific population effect size, is the variance of the th effect size estimate (e.g.,
standard error of estimate) which is also called the within-study variance, is the population
effect size, is the between-study variance, and is the number of studies. In our study, is
the relative effect and is its variance estimator (94). In addition, the term “studies” usually
used in meta-analysis corresponds to recording sets. This model can also be written as

Power analysis
We performed a power analysis to plan the number of recording sets (corresponding to the
number of studies in meta-analysis) necessary to infer the statistical significance of the specified
analyses. Because our pilot data consisting of only five recording sets are too small to empirically
derive reliable effect size estimates, our power analyses used an SESOI corresponding to d = 0.4
(see (93, 172) for the use of SESOI for sample size planning). However, there is one nuisance
parameter in the model (i.e. between-study variance) necessary to specify for the power analysis,
and we set this value with the estimate from the pilot data as a workaround.

Although we are planning to use the Benjamini-Hochberg step-up procedure (99) in our
hypothesis testing, since the actual critical value depends on the p-value we will observe, it is
challenging to specify sample size based on the false discovery rate especially when using
nonparametric statistics, though some methods are available for parametric models (173, 174).
Therefore, we use the family-wise error rate for setting the alpha level for sample size planning as
a proxy. Although it is known that when all null hypotheses are true, the false discovery rate
becomes equal to the family-wise error rate (99), and the required sample size does not differ
substantially between false discovery rate methods and stepwise family-wise error control
methods in certain cases (175), our case may not necessarily match these conditions. Therefore
our sample size estimate will be equal to or more than the size required for specified power
assuming the alpha level determined by Bonferroni correction to set a stricter critical value.

We define the alpha level as 0.05 divided by six which is a family-wise error control by
Bonferroni correction, and the statistical power as 0.95 for our sample size planning. Our
statistical model is Gaussian random-effect models as explained in Materials and Methods.



Our power analysis estimated that n=60 recording sets is estimated as the minimum
required sample size to achieve the above type I and type II error control levels when testing our
six null hypotheses (see Table 1 for details). The features other than the sign of f0 slope (i.e. f0, IOI
rate, rate of change of f0, f0 ratio, and spectral centroid) were estimated to have a relatively low
between-study (recording set) variance, so the required number of recording sets computed for
each feature is estimated to be lower than 10. However, as shown in Fig. S2, the sign of f0 slope
has a large between-study variance, and that resulted in 60 recording pairs being needed.

Please note that our power analysis does not take into account the specific languages used.
While it would be ideal to have models that capture how languages (and other factors such as sex,
age, etc.) influence the song-speech difference, we do not have enough empirical data or prior
studies to build such models at this moment. Hence, we simply treat each recording data without
such factors, controlling for language family relationships separately in our robustness analyses.
Future studies may be able to better incorporate such factors in a power analysis based on the data
our study will provide.

Power analysis procedure
We first describe the procedure for sample size planning for the hypotheses testing differences
(H1-3). In this case, hypothesis testing evaluates , which means
that the null hypothesis assumes the population effect size is the same as no difference and the
alternative hypothesis assumes the difference exists in the positive direction (one-sided). Since we
use relative effects as our effect sizes, we define . As described in the “Power analysis”
section, we decided to use SESOI for sample size planning, meaning we assume that the
population effect size is the same as SESOI. Therefore, we specify where and

is the standard cumulative normal distribution.

The power of the Gaussian random-effects model is given by (176, 177)

where Zα satisfies that α is the significance level of the test, and　δ is a non-centrality
parameter defined as which represents the gap between the parameter of the null
hypothesis model and the population parameter.

In order to perform the power analysis, we first need to specify the nuisance parameter
(between-study variance) which is generally unknown. We use DerSimonian-Laird estimator (98,
101) to estimate using pilot data. However, there is the issue that the within-study variance
of sign of f0 slope of the Yoruba recordings became 0. This happened because the signs of f0 slope
of singing and spoken description are all -1, which means f0 contours of all phrases show better
fitting to a downward direction than the upward. Zero variance causes divergence (i.e., +∞) in the
weighting used in the DerSimonian-Laird estimator. As a workaround, the hypothetical standard
error of the relative effect is estimated by assuming at least one of the observations was +1 (i.e.
one of the f0 slopes fits the upward direction). Specifically, we first re-estimated the standard error
of the relative effect with both patterns that one of the signs is +1 in either the singing or spoken
description. Then we took the smaller variance estimate for the hypothetical standard error of this
recording set.

Furthermore, we also need an assumption for to calculate the power and to estimate the
necessary number of studies since the power is the function of the non-centrality parameter,
between-study variance, and within-study variances. We assume the within-study variance has a



mean and plug in the average of the within-study variances from pilot data. Algorithmically, our
procedure is

1. Estimate and .
2. Calculate the average of the within-study variance.

is the number of pilot recording sets (i.e. = 5) here.
3. Set
4. Calculate the power using the equation (1)
5. If the calculated power is lower than the target power then,

(append to the current ) and return to 4.
Otherwise, take the number of elements of as the necessary number of studies.

For the power analysis of equivalence tests (H4-6), we first note that the Gaussian
random-effects model is equivalent to a normal distribution since random-effects models are
Gaussian mixture models having the same mean parameter among components, therefore

where

We use this reparameterized version for equivalence tests. We estimate the necessary
number of studies by simulating how many times the test can reject a null hypothesis under
the alternative hypothesis being true out of the total number of tests. Specifically, the rejection
criteria is (102)

where C = C(α, δ, σ) satisfies

is the sample estimate of the mean, and we use the estimated instead of the simple
average of effect sizes. Here, defines the boundary for equivalence testing, namely

that the boundary is symmetric at 0. We set the boundary parameter
based on SESOI that shifts the center of the relative effect to 0 from 0.5,
and specify θ = 0 assuming that the population effect sizes of the features to be tested are null.
When running the simulation, we draw random samples as and increase the
number of studies gradually until the simulation satisfies the expected power under the
specified significance level.



SUPPLEMENTARY FIGURES

Fig. S1. Map of the linguistic varieties spoken by our [planned] 81 coauthors as 1st/heritage
languages. Each circle represents a coauthor singing and speaking in their 1st (L1) or
heritage language [NB: 6 of the original 81 planned coauthors were unable to complete the
recording and annotation process compared to our initially planned sample; cf. Fig. 1 for
the final version of the map of 75 linguistic varieties and Acknowledgments section for
details of the 6 planned coauthors]. The geographic coordinates represent their hometown
where they learned that language. In cases when the language name preferred by that
coauthor (ethnonym) differs from the L1 language name in the standardized classification
in the Glottolog (47), the ethnonym is listed first followed by the Glottolog name in round
brackets. Language family classifications (in bold) are based on Glottolog. Square
brackets indicate geographic locations for languages represented by more than one
coauthor. Atlantic-Congo, Indo-European and Sino-Tibetan languages are further grouped
by genus defined by the World Atlas of Language Structures ((48);
https://wals.info/languoid; Accessed: September 1, 2022; Version number:
v2014.2-199-ga9d1a68).

https://wals.info/languoid


Fig. S2. Pilot data showing similarities/differences between song and speech for each of the
six hypothesized features across speakers of five languages (coauthors McBride,
Hadavi, Ozaki, D. Sadaphal, and Nweke). Red diamonds indicate the population mean
and black bars are confidence intervals estimated by the meta-analysis method. Although
we use false discovery rate to adjust the alpha-level, these intervals are constructed based
on Bonferroni corrected alpha (i.e. 0.05/6). Whether the confidence interval is one-sided
or two-sided is determined by the type of the hypothesis. Positive effect sizes indicate
song having a higher value than speech, with the exception of “temporal rate”, whose sign
is reversed for ease of visualization (i.e., the data suggest that speech is faster than song.
The effect size is originally measured by relative effect, and that result is transformed into
Cohen’s D for interpretability. The red shaded area surrounded by vertical lines at ±0.4
indicates the “smallest effect size of interest” (SESOI) suggested by (93). See Fig. 8 for a
schematic of how each effect size is calculated from each pair of sung/spoken recordings.



Fig. S3. Alternative visualization of Fig. S2 showing mean values of each feature of song and
speech, rather than paired differences. “Speech” indicates spoken description (not lyric
recitation). This figure allows us to visualize some trends not viewable from Fig. S2, such
as absolute values of each feature. For example, male voices all tend to be lower-pitched
than female, but regardless of sex all singers use higher pitch for singing than speaking.
(See Fig. S8 for an alternate version including exploratory analyses comparing
instrumental and recited versions.)



Fig. S4. Relationship between the duration of recording excerpt analyzed and estimated
effect size for the 6 features and 5 sets of pilot recordings analyzed in Fig. S2. Since
the length of the pilot recordings ranged from under 30s to over 70s, plots are truncated at
the point when there is no longer enough matching sung and spoken audio recording for
that language (e.g., 25s for Marathi and Yoruba, 70s for English). The red vertical dashed
line at 20s indicates the length we concluded approximately optimizes the tradeoff
between accuracy of effect size estimation and the substantial time required to manually
annotate onsets.



Fig. S5. Process of computing f0 ratios. The leftmost figure shows an f0 contour which is
segmented by three onset times. Then, the pitch ratio of the antecedent segmented f0
contour (orange) and the consequent f0 contour (purple) is calculated by taking exhaustive
pairs of samples from two signals (104 samples × 55 samples in this example). The
rightmost figure shows the obtained intervals by histogram which displays two peaks. The
right-hand mode is the interval of ascending direction (around 370 cents) generated from
the green rectangle part. The left-hand mode is the interval of descending direction
(around -50 cents) generated from the orange rectangle part. Note that this example uses
the cent scale rather than the frequency scale so that intervals can be calculated by
subtraction.



Fig. S6. Within- and between-annotators randomness of onset annotations including
automated methods (40, 59) discussed in Section S1.4 “Pilot data analysis”. 10-second
excerpts were used. “Reference” is the result of the annotation by the person who
originally made the recording, and “Another annotator” is an annotation by other
collaborators. “Reannotation” is annotation conducted again by the person who undertook
the reference annotation.



Fig. S7. Effect sizes of each feature across five languages using the pilot data as in Fig. S2
but with exploratory comparisons with recitation and instrumental recording types.
Refer to Fig. S2 for the explanation of the figure description.



Fig. S8. Mean values of each feature as in Fig. S3 but with all recording types (including
recitation and instrumental). “Desc.” means spoken description, “Recit.” means recited
lyrics.



Fig. S9. Effect sizes of each feature across five languages using the pilot data as in Fig. S2
with additional exploratory features. Green-colored diamonds and two-sided confidence
intervals are used for the features for which hypotheses are not specified.



Fig. S10. Pilot analysis of a subset of Hilton et al.’s (26) data (pairs of adult-directed
singing/speaking recordings from n=9 participants speaking English, Spanish, or
Mandarin) focusing on pitch height. (27) previously analyzed this subset for preliminary
analyses using the same method described in S2.1 to avoid contamination by various
noises included in audio (vocalization by babies, car noises, etc.), which allows us to
explore issues such as whether such extraneous noises are likely to be a concern in our
planned fully automated analysis of Hilton et al.’s (26) full dataset (cf. Fig. S11). Although
all four conditions demonstrate the predicted trend of song being consistently higher than
speech, the effect size varies depending on the dataset and analysis method used (see the
“Exploring recording representativeness and automated scalability” section for
discussion).



Fig. S11. An example of fully-automated vs. semi-automated f0 extraction underlying the
analyses in Fig. S7 for one of the field recordings from Hilton et al.’s (26) dataset.
AC002D = adult-directed speech [D] from individual #02 from the Spanish-speaking
Afro-Colombian [ACO] sample). While the extracted f0 values are generally similar, the
fully automated pYIN method sometimes has large leaps, particularly when there are
external noises and the main recorded individual stops vocalizing to breathe (here the
high-pitched blue contours at around 3.5 and 8 seconds correspond to the vocalizations of
a nearby child while the recorded adult male takes a breath).



Fig. S12. Illustration of the computation of IOI ratio deviation and f0 ratio deviation. KDE
stands for kernel density estimation. The interval between the magenta lines is the range of
the bandwidth parameter within which the Betti number (number of modes) is most stable
which we interpret as indicating the strong persistence of the topological features. Note
that due to the removal of data points from the low-density region, the number of modes
does not simply monotonically decrease with the increase in the bandwidth parameter.



Fig. S13. Effect sizes of each feature using the same data as in Fig. 4 but with exploratory
comparisons with recitation and instrumental recording types. Refer to Fig. 4 for the
explanation of the figure description.



Fig. S14. Alternative visualization of Fig. 5 showing mean values of each feature by
biological sex and focusing on the features subject to the main confirmatory analysis.
Note that the colors of data points indicate language families, which are coded the same as
in Fig. 5.



Fig. S15. Re-running of the analysis on our full data with automated feature extraction.
pYIN (60) was used for f0 extraction and de (59) Praat script was used for onset timing
extraction. Break annotation was not automated so pitch declination was not measured.



Fig. S16. Color mapping of Fig. 6. The colors of data points in Fig. 6 correspond to the language
families as depicted in this figure.



Fig. S17. Supplementary information for Fig. 6. Mean values of pitch height of each recording
are displayed. f0s were extracted by pYIN (60). The horizontal lines in the violin plots are
medians.



Fig. S18. Supplementary information for Fig. 6. Mean values of pitch stability of each
recording are displayed. f0s were extracted by pYIN (60). The horizontal lines in the violin
plots are medians.



Fig. S19. Supplementary information for Fig. 6. Mean values of timbral brightness of each
recording are displayed. f0s were extracted by pYIN (60). The horizontal lines in the violin
plots are medians.



Fig. S20. Mapping data by nPVIs of song and spoken description, song and lyrics recitation,
and song and instrumental by each collaborator, and the density plot of nPVIs of
each. The red lines are linear fitting of nPVIs, and the dotted line is y = x which can be
used to grasp if the nPVI of the particular form is larger than that of another and vice
versa.



Fig. S21. Difference between onset times annotated by Ozaki (YO) and onset times
annotated by Savage (PES) per recording for the 8 codings re-annotated by Savage
to assess inter-rater reliability. The horizontal lines in the violin plots indicate the
median. The abbreviation on the x-axis indicates the initials of randomly chosen
collaborators for inter-rater reliability assessment using their recordings. Color is coded as
the same in Fig. 4.



Fig. S22. Permutation importance of the features in three binary classifiers. A large
permutation importance score indicates a strong influence on classification performance.



Fig. S23. Correlation matrix of the features within song recordings. The data are the mean
values of the features, which are plotted in Fig. 5.



Fig. S24. Correlation matrix of the features within spoken description recordings. The data
are the mean values of the features, which are plotted in Fig. 5.



SUPPLEMENTARY TABLES
Hypothesis Feature Test Combined ES CI (α = 0.05/6) p-value

1) Song uses higher pitch than
speech

f0 One-tailed
confidence
interval of
the
combined
effect size

1.61 1.41, n/a *< 1.0x10-8

2) Song is slower than speech IOI rate 1.60 1.40, n/a *< 1.0x10-8

3) Song uses more stable
pitches than speech

-|Δf0| 0.65 0.56, n/a *< 1.0x10-8

4) Song and speech use
similar timbral brightness

Spectral
centroid

Equivalence
test for the
combined
effect size

0.13 -0.0046, 0.27 *5.2x10-6

5) Song and speech use
similar sized pitch intervals

f0 ratio 0.082 -0.044, 0.21 *< 1.0x10-8

6) Song and speech use
similar pitch contours

Sign of f0
slope

0.42 0.13, 0.69 0.57

Table S1. Results of the confirmatory analysis. The effect sizes reported in the table are
Cohen’s D transformed from relative effects for ease of interpretation, but the hypothesis
tests were conducted with relative effects. The CIs are either one-tailed or two-tailed,
depending on the aim of the test. Note the equivalence test uses statistics different from
the above meta-analysis CIs to verify equivalence hypotheses. Asterisks in p-values
indicate that the null hypothesis is rejected.



Hypothesis Featur
e

Test Combined
ES

CI (α =
0.05/6)

p-value

1) Song uses higher
pitch than speech

f0 One-tailed
confidence
interval of
the
combined
effect size

1.73 1.46, n/a *< 1.0x10-8

2) Song is slower than
speech

IOI rate 1.64 1.40, n/a *< 1.0x10-8

3) Song uses more
stable pitches than
speech

-|Δf0| 0.64 0.51, n/a *< 1.0x10-8

4) Song and speech use
similar timbral
brightness

Spectral
centroid

Equivalence
test for the
combined
effect size

0.14 -0.028, 0.31 *3.3x10-4

5) Song and speech use
similar sized pitch
intervals

f0 ratio 0.10 -0.067, 0.27 *3.5x10-5

6) Song and speech use
similar pitch contours

Sign of
f0 slope

0.23 -0.11, 0.60 0.12

Table S2. Results of the robustness check, which used data only from the collaborators who
had not known the hypotheses when generating data (47 pairs of singing and spoken
description recordings). Refer to Table S1 for the explanation of the table description.



Hypothesis AIC
(standard

)

AIC
(multi-level)

Log
likelihood
(standard

)

Log
likelihood
(multi-level)

Variance of the
effects at

language family

1) Song uses higher pitch
than speech

-87.08 -85.08 45.54 45.54 < 1.0×10-8

2) Song is slower than
speech

-111.64 -109.73 57.82 57.86 1.86×10-3

3) Song uses more stable
pitches than speech

-153.53 -151.53 78.76 78.76 < 1.0×10-8

4) Song and speech use
similar timbral brightness

-86.32 -84.90 45.16 45.45 2.07×10-3

5) Song and speech use
similar sized pitch
intervals

-95.90 -93.90 49.95 49.95 < 1.0×10-8

6) Song and speech use
similar pitch contours

-7.24 -5.48 5.62 5.74 2.29×10-3

Table S3. Results of the robustness check comparing models taking into account dependency
by language families. Superior AIC scores are highlighted in bold. Maximum likelihood
estimation is used to fit the models. “standard” refers to standard random-effects models
used in the confirmatory analyses, and “multi-level” refers to two-level random-effects
models grouping data by language families. The right-most column shows the maximum
likelihood estimate of the variance parameters appearing in the multi-level models. The
log-likelihoods are almost identical between the two models, and multi-level models
degenerate to standard random effects models (i.e. variance due to language family is
negligible), which means grouping data by language family is redundant and simple
random effects models are adequate to model the data.



Feature JT statistics P-value

Pitch height 6752 1.2 x 10-4

Temporal rate 27672 1.2 x 10-4

Pitch stability 3569 1.2 x 10-4

Timbral brightness 16864 1.2 x 10-4

Pitch interval size 13340 0.30

Pitch declination 10288 1.2 x 10-4

Phrase length 10876 1.2 x 10-4

Intensity 13787 3.7 x 10-4

Timbral noisiness 22998 1.2 x 10-4

Rhythmic regularity 23484 1.2 x 10-4

Pitch interval regularity 20329 1.2 x 10-4

Pulse clarity 9911 1.2 x 10-4

Pitch range 13114.5 0.20

Table S4. Nonparametric trend test (Jonckheere-Terpstra test) for the shift of mean values
of features across different acoustic forms. The category is ordered as 1 = instrumental,
2 = song, 3 = lyrics recitation, and 4 = spoken description. Note that the
Jonckheere-Terpstra test assumes observations in each category to be independent of the
other categories (as in a between-participants design), but our data are collected in a
within-participants design. Therefore, the p-values can be somewhat inaccurate in testing
the null hypothesis (i.e., H0: θ1 = θ2 = θ3 = θ4) if there is a strong correlation within
participants. The p-values were calculated by a Monte Carlo permutation procedure.



Logistic
regression

SVM Naive Bayes

Accuracy 95.78% 93.75% 92.94%

Song Precision 96.66 92.68 92.81

Recall 95.25 95.70 93.98

F1 score 95.72 93.92 93.03

Spoken
description

Precision 95.74 95.89 94.45

Recall 96.31 91.80 91.91

F1 score 95.80 93.50 92.76

Table S5. Average over performance metrics measured by randomly splitting recording sets
into training and test sets 1024 times. Each cell represents the classification accuracy of
song and spoken description, and the precision, recall, and F1 score of each classifier.



Vocalizer Feature Relative
effect (pre)

Manipulation to
demonstrate SESOI

(pre = 0.611)

Manipulation to
demonstrate
equivalence
(pre = 0.5)

D. Sadaphal
(Marathi)

f0 0.992 -730 cents (i.e., pitch
is transposed down
such that sung pitch
is more than half an
octave lower than the
original)

-860 cents

Nweke (Yoruba) f0 0.995 -930 cents -1030 cents

McBride (English) f0 0.931 -650 cents -770 cents

Hadavi (Farsi) f0 0.978 -430 cents -480 cents

Ozaki (Japanese) f0 0.997 -1300 cents -1430 cents

D. Sadaphal
(Marathi)

IOI 0.931 x 0.544 (i.e.,
playback speed is
increased by almost
2x such that the
duration of each sung
note is only 54.4% as
fast as the original)

x 0.472

Nweke (Yoruba) IOI 0.831 x 0.622 x 0.499

McBride (English) IOI 0.836 x 0.530 x 0.415

Hadavi (Farsi) IOI 0.932 x 0.396 x 0.324

Ozaki (Japanese) IOI 0.939 x 0.393 x 0.320

Table S6. Overview of our pilot recordings with key features (pitch height [f0] and temporal
rate [1/IOI]) manipulated to demonstrate what real examples of song and speech
might sound like if the differences were non-existent (“equivalence”) or negligible (as
small as our chosen SESOI [Smallest Effect Size Of Interest]). Audio files to listen to
the effect of manipulation are available at https://osf.io/8mcev.

https://osf.io/8mcev


RECORDING PROTOCOL
We study how and why song and speech are similar or different throughout the world, and we need your
help! We are recruiting collaborators speaking diverse languages who can record themselves singing one
short (minimum 30 second) song excerpt, recitation of the same lyrics, spoken description of the song, and
an instrumental version of the song’s melody. In addition, we ask collaborators to include a transcribed text
that segments your words according to the onset of the sound unit (e.g., syllable, note) that you feel
reasonable. The recording/transcription/segmentation process should take less than 2 hours. (Later
we will ask you to check sound recordings that we produce based on your segmented text, which may take
up to 2 more hours.)

Collaborators will be coauthors on the resulting publication, and will also be paid a small honorarium
(pending the results of funding applications). In principle, all audio recordings will be published using a
CC BY-NC 4.0 non-commercial open access license, but exceptions can be discussed on a case-by-case
basis (e.g., if this conflicts with taboos or policies regarding indigenous data sovereignty). We seek
collaborators aged 18 and over who are speakers of diverse 1st/heritage languages.

Once you have finished the recordings and created the segmented text files, please:
● email us your text files (but NOT your audio recordings) to psavage@sfc.keio.ac.jp and

yozaki@sfc.keio.ac.jp.
● email your audio recordings to globalsongspeech@gmail.com, where they will be securely

monitored and checked by our RA, Tomoko Tanaka, who is not a coauthor on the manuscript.
This folder shows an example template of one full set of recordings and text files:
https://drive.google.com/drive/folders/1qbYpv_gxy-gQTBpATA3WwtPHkj14-lSU?usp=sharing

If you have any questions about the protocol, please email:
‐ Dr. Patrick Savage (psavage@sfc.keio.ac.jp), Associate Professor, Keio University
‐ Yuto Ozaki (yozaki@sfc.keio.ac.jp), PhD student, Keio University

[Recording content]

● Please choose one traditional song to record. This should be a song you know how to sing that is one
of the oldest/ most “traditional” (loosely defined)/ most familiar to your cultural background. This
might be a song sung to you as a child by your parents/relatives /teachers, learned from old
recordings, etc. (we plan to include other genres in future stages). Since there is no universally
accepted definition of “song” (which is an issue we hope to address in this study), you are free to
interpret “song” however feels appropriate in your language/culture. Please contact us if you would
like to discuss any complexities of how to define/choose a “traditional song”.

● Please choose a song that you can record yourself singing for a minimum of 30 seconds. However,
we encourage you to record yourself for as long as makes sense for your song to enable more in-depth
future studies without having to go back and re-record yourself (though we request you keep within a
maximum of 5 minutes if possible). Note that it is fine if it takes less than 30 seconds to recite the
same lyrics when spoken, but please ensure that your free spoken description also lasts a minimum of
30 seconds.

● Please use your 1st/heritage language for every recording (except for the instrumental track). If you
speak multiple languages, please choose one language (and let us know which one ahead of time) and
avoid combining multiple languages in singing, recitation and spoken description.

https://creativecommons.org/licenses/by-nc/4.0/
mailto:psavage@sfc.keio.ac.jp
mailto:yozaki@sfc.keio.ac.jp
mailto:globalsongspeech@gmail.com
https://drive.google.com/drive/folders/1qbYpv_gxy-gQTBpATA3WwtPHkj14-lSU?usp=sharing
mailto:psavage@sfc.keio.ac.jp
mailto:yozaki@sfc.keio.ac.jp


● Please record song, lyric recitation, spoken description and instrumental in the order that you feel
natural.

○ Song: When you sing, please sing solo without instrumental accompaniment, in a pitch range that is
comfortable to you. You do not need to follow the same pitch range sung by others. Feel free to sing
while reading lyrics/notation if it is helpful.

○ Lyric recitation: When you recite the lyrics, please speak in a way you feel is natural. Feel free to read
directly from written lyrics if it is helpful.

○ Spoken description: Please describe the song you chose (why you chose it, what you like about it,
what the song is about, etc.). However, please avoid quoting the lyrics irn your description. Again, aim
for minimum 30 seconds.

○ Instrumental version: Please also record yourself playing the melody of your chosen song(s). We
would be delighted for you to play with a traditional instrument in your culture or country.
Continuous-pitch instruments (e.g., violin, trombone, erhu) are especially helpful, but fixed-pitch
instruments (e.g., piano, marimba, koto) are fine, too. Please do not use electronic instruments (e.g.
electric keyboard). Choose whatever pitch/key is comfortable for you to play (this need not be the same
pitch/key as the sung version). Please contact us if you want to discuss any complexities involved in
trying to play your song’s melody on an instrument.

➢ If you do not play a melodic instrument, it is also acceptable to just record the song’s
rhythm using tapping sounds or other percussive sounds (e.g., drums). In this case, this
“instrumental” recording will only be used to analyze rhythmic features. In this case, you
can tap the rhythm while singing in your head, but please do not sing out loud.

[Recording method]

● Please record in a quiet place with minimal background noise.

● Please record each description/recitation/song/instrumental separately as different files. The file name
should be "[Given name]_[Surname]_[Language]_Traditional_[Song title]_[YYYYMMDD of the
time you record]_[song|recit|desc|inst].[file format]". For example,

○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_song.wav
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_recit.wav
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_desc.wav
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_inst.wav

● Please ensure that your mouth (or instrument) is the same distance from your recording device
for each recording, and please make all recordings during one session (to avoid differences in
recording environment and/or your vocal condition on that day).

● Regarding the recording device, a high-quality microphone would be great, but a smartphone or
personal computer built-in microphone is also fine. Preferred formats are: .mp4, .MOV, .wav, with
sampling rate: 44.1kHz or higher / bit rate: 16bit or higher for .wav and lossless codecs (e.g. Apple
Lossless Audio Codec) and 128kbps or higher for .MOV and .mp4 with lossy compression codecs. If
you are an iPhone user and considering using the Voice Memos app, please set the "Audio Quality"
configuration to "Lossless".

○ Note: although we only require and will only publish audio data for the main study, we
have found that default audio quality can be higher when recording video via smartphone
than when recording audio. Also, when it comes time to publish the findings with
accompanying press releases, we plan to ask for volunteers who want to share videos of



their own singing/speaking. So if you want to make your initial recordings using video, it
may save time if you decide you want to volunteer video materials later on.

[Segmented texts]

● After the recording of spoken description, lyric recitation or song, please create a Word file or Rich
Text xFormat file per recording that segments your utterance based on the onset of acoustic units (e.g.,
syllable, note) that you feel natural. It is up to you how you divide song/speech into what kind of
sound unit.

○ Technically, we would like you to focus on the perceptual center or "P-center" (Morton, Marcus, &
Frankish, 1976), which is "the specific moment at which a sound is perceived to occur" (Danielsen
et al., 2019).

○ Segmentation by the acoustic unit of language (e.g. syllable, mora), by the acoustic unit of music
(e.g. note,節 fushi), and by the P-center are not necessarily the same. For example, one syllable
may sometimes be sung across multiple notes (and vice versa).

● Please use a vertical bar (“|”) to segment recordings (see examples below).

● Please use romanization when writing and also write it based on the phoneme in your native script if it
doesn’t use Roman characters. You may use IPA (International Phonetic Alphabet) instead of
romanization if you prefer.

● Please start a new line in the segmented text at the position where your utterance has a pause for
breathing

● When there are successive sound units that keep the same vowels (e.g. "melisma" in Western music,
"kobushi" in Japanese music, etc.) and you feel have separate onsets, then you can segment the text by
repeating vowels (e.g. A|men → A|a|a|a|men).

● Please include a written English translation of the text of the spoken description and the sung lyrics.

● Example (Japanese)
○ Singing of Omori Jinku

(Segmented texts with romanization)
Ton|Bi|Da|Ko|Na|Ra|Yo|O|O|O
I|To|Me|Wo|O|Tsu|Ke|E|Te
Ta|Gu|Ri|Yo|Se|Ma|Su|Yo|O|O
I|To|Me|Wo|O|Tsu|Ke|E|Te

Hi|Za|Mo|To|Ni|I|Yo|O
Ki|Ta|Ko|Ra|Yoi|Sho|Na

(Original lyrics)
鳶凧ならヨ　糸目をつけて
（コイコイ）
手繰り寄せますヨ　膝元にヨ
（キタコラヨイショナ）

(English translation of the lyrics)
Tie the bridle of a kite kite (Tonbi-dako), pull it in to your knees.
(Kita-ko-ra Yoi-sho-na)

https://www.freecodecamp.org/news/how-to-type-the-vertical-line-bar-character-on-a-keyboard
https://drive.google.com/file/d/1vxRp2ruZcHx22l0TgiEDHkJANlKRMQU7/view?usp=sharing


○ Lyrics recitation of Omori Jinku
(Segmented texts with romanization)
Ton|Bi|Da|Ko|Na|Ra|Yo
I|To|Me|Wo|Tsu|Ke|Te
Ta|Gu|Ri|Yo|Se|Ma|Su|Yo
Hi|Za|Mo|To|Ni|I|Yo
Ki|Ta|Ko|Ra|Yoi|Sho|Na

○ Spoken description of Omori Jinku
(Segmented texts with romanization)
E-|Wa|Ta|Shi|Ga|E|Ran|Da|No|Ha, |Oo|Mo|Ri|Jin|Ku, |To|Iu, |E-, |Tou|Kyou|No|Min|You|De|Su.
Oo|Mo|Ri|To|Iu|No|Ha|Tou|Kyou|No|Ti|Mei|De,
I|Ma|Wa|Son|Na|O|Mo|Ka|Ge|Ha|Na|In|Desu|Ke|Re|Do|Mo
Ko|No|U|Ta|Ga|U|Ta|Wa|Re|Te|I|Ta|To|Ki|Ha,|Sono,|No|Ri|Ga,|Ni|Hon|De|I|Ti|Ban|To|Re|Ru|Ba|Sho|
To|Iu|Ko|To|De,
Maa|Wa|Ri|To|So|No,|Kai|San|Bu|Tsu|De|Nan|Ka|Yuu|Mei|Na, |Ti|I|Ki|Dat|Ta|Mi|Ta|I|De|Su.
Kyo|Ku|No|Ka|Shi|Mo,
E-, |Sou|Des|Ne, |Ho|Shi|Za|Ka|Na, |To|Ka, |Sou|Iu|Ki-|Wa-|Do|Ga|De|Te|Ki|Ma|Su.

(Original spoken description)
えー、私が選んだのは、大森甚句、という、えー、東京の民謡です。
大森というのは東京の地名で、
今はそんな面影はないんですけれども
この歌が歌われていたときは、その、海苔が、日本で一番取れる場所ということで、
まぁ割とその、海産物でなんか有名な、地域だったみたいです。
曲の歌詞も、
えー、そうですね、干し魚、とか、そういうキーワードが出てきます。

(English translation of the spoken description)
Ah, the song I chose is entitled Omori-Jinku, ah, a Minyo song from Tokyo. Omori is the name of a
place in Tokyo, and it has changed a lot these days, but in those days when this song was sung, the
place was known for producing the largest amount of nori (seaweed) in Japan, and it also seemed
popular due to seafood. Speaking of the lyrics of the song, ah, yeah, like dried fishes, such
keywords appear.

● Example (English)

○ Singing of Scarborough Fair
(Segmented texts with romanization)
Are |you |go|ing |to |Scar|bo|rough |Fair
Pars|ley, |sage, |rose|ma|ry |and |thyme
Re|mem|ber |me |to |one |who |lives |the|ere
She |once |was |a |true |love |of |mine
Tell |her |to |make |me |a |cam|b|ric |shirt
Pars|ley |sage, |rose|ma|ry |and |thyme
With|out |no |seam |or |nee|dle|wo|ork
Then |she’ll |be |a |true |love |of |mine

○ Lyrics recitation of Scarborough Fair
(Segmented texts with romanization)
Are |you |go|ing |to |Scar|bo|rough |Fair
Pars|ley, |sage, |rose|ma|ry |and |thyme
Re|mem|ber |me |to |one |who |lives |there
She |once |was |a |true |love |of |mine
Tell |her |to |make |me |a |cam|bric |shirt
Pars|ley |sage, |rose|ma|ry |and |thyme
With|out |no |seams |nor |nee|dle|work
Then |she’ll |be |a |true |love |of |mine

https://drive.google.com/file/d/1aminjvMyA2dFIQLlTneK1jdUOgg989lL/view?usp=sharing
https://drive.google.com/file/d/1UCsnrbPEsTpqSvs-DpnR_9GuElvqxyMA/view?usp=sharing
https://drive.google.com/file/d/1iZHkvsqrSVDRvBa8OmX-jLvgm7LA2Ogk/view?usp=sharing
https://drive.google.com/file/d/1eam02tIWAizwVUNbfei_l2djMjjQmQZ0/view?usp=sharing


○ Spoken description of Scarborough Fair
(Segmented texts with romanization)
For |my |tra|di|tio|nal |song |I’m |gon|na |sing |Scar|bo|rough |Fair,|
um, |be|cause |it |is |one |of |the |ol|dest|
songs |that |is, |uh, |quite |well |known |be|cause |it |was, |ah, |made |po|pu|lar |by, |ah, |Paul |Si|mon
|and |Art |Gar|fun|kle.|
Um,
and |it |al|so |has |this |nice |kind |of |haun|ting,|
beau|ti|ful |me|lo|dy |with |this, |uh, |nice |Do|ri|an |scale |that |gives |it |this |kind |of |old |fa|shioned
|feel |that |I |quite |like.|
And |then |the, |the |mea|ning |is |quite |um, |ah, |In|t’res|ting,|
has |this |kind |of |strange,|
um, |im |pos|si|ble |rid|dle |kind |of |theme |where |the,|
ah, |cha|rach|ter |keeps |as|king |the, |um,|
o|thers |to |do |these |im|pos|si|ble |things, |so |it’s |kind |of |this|
cryp|tic, |old|fa|shioned |song |that |I, |ah, |I |quite |like.

● Please save the segmented texts of each description/recitation/song separately as different files. The
file name should be "[Given name]_[Surname]_[Language]_Traditional_[Song title]_[YYYYMMDD
of the time you record]_[song|recit|desc].[file format]". For example,

○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_song.docx
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_recit.docx
○ Yuto_Ozaki_Japanese_Traditional_Sakura_20220207_desc.docx

➢ Therefore, you will upload 7 files in total as your deliverables (i.e. 4 audio files and 3
Word/RTF files) in the end.

https://drive.google.com/file/d/1HhuIGihfUE16U8fR1sx2R6UijI1Oh9Th/view?usp=sharing


COLLABORATION AGREEMENT FORM

NB: This agreement had a different timeline from that eventually adopted, because after
beginning the process of scheduled review and discussing the issue of confirmation bias with
our editor, we concluded that we needed to modify our planned level of bias control from
Level 6 (“No part of the data that will be used to answer the research question yet exists and no
part will be generated until after IPA [In Principle Accepantce] (so-called ‘primary RR’)”) to
Level 2 (“At least some data/evidence that will be used to answer the research question has
been accessed and partially observed by the authors, but the authors certify that they have not
yet sufficiently observed the key variables within the data to be able to answer the research
question AND they have taken additional steps to maximise bias control and rigour (e.g.,
conservative statistical threshold, recruitment of a blinded analyst, robustness testing, the use
of a broad multiverse/specification analysis, or other approaches for controlling risk of bias)”;
cf. “Registered Reports with existing data”).
We thus had to ask collaborators to record themselves several months earlier than they had
originally agreed. Most of them managed to do this, but some did not. Because the number
of collaborators who could not meet the revised timeline was small enough not to affect our
planned power analyses or robustness analyses, we shared the manuscript with all authors
and will incorporate those who had not yet made their recordings in the robustness
analyses, along with the other authors who made their recordings after knowing the
hypotheses.

Collaboration agreement form for "Similarities and differences in a global sample of song and speech
recordings"

This project uses an unusual model in which collaborators act as both coauthors and participants. All
recorded audio data analyzed will come from coauthors, and conversely all coauthors will provide
recorded audio data for analysis. Collaborators will be expected to provide data within 2 months of when
these are requested. Please do NOT send data now - we are following a Registered Report model where
data must not be collected until the initial research protocol has been peer-reviewed and received In
Principle Acceptance. We estimate this will be in early 2023, and ask that you provide your audio
recordings and accompanying text within 2 months of In Principle Acceptance. We estimate this
recording/annotation will take approximately 1-2 hours to complete. This will be followed by an additional
1-2 hours to check/correct the final files we prepare at a later date.

All collaborators reserve the right to withdraw their coauthorship and data at any time, for any reason, until
the manuscript has passed peer review and been accepted for publication. In such cases, their data will be
immediately deleted from all computers and servers, public and private (though be aware that if this
happens after posting to recognized preprint/data servers such as PsyArXiv or Open Science Framework
some data may remain accessible). The corresponding authors (Patrick Savage and Yuto Ozaki) also
reserve the right to cancel this collaboration agreement and publish without a given collaborator’s data and
coauthorship if necessary (e.g., if data are not provided according to the agreed timeline, or if an
insurmountable disagreement about manuscript wording arises). In such a case, any contributions made
will be acknowledged in the manuscript.

Collaborators will be coauthors on the resulting publication, and will also be paid a small honorarium
(pending the results of funding applications) unless they choose to waive the honorarium. In principle, all
audio recordings will be published as supplementary data with this manuscript and permanently archived
via recognized preprint/data servers (e.g., PsyArXiv, Open Science Framework, Zenodo) using a CC
BY-NC 4.0 non-commercial open access license, but exceptions can be discussed on a case-by-case basis
(e.g., if this conflicts with taboos or policies regarding indigenous data sovereignty). We seek collaborators
aged 18 and over who speak a diverse range of 1st/heritage languages.

https://rr.peercommunityin.org/PCIRegisteredReports/help/guide_for_authors#h_95790490510491613309490336


For analysis, we plan to collect and publish demographic information about each collaborator along with
their recordings (language name, city language was learned, biological sex [optional], birth year
[optional]). Providing your biological sex or birth year are optional - if you opt not to include these, we
will simply exclude your audio data from exploratory analyses that use these variables. (Though please
note that biological sex and age may be guessed from your recordings even if you opt not to answer these
questions.)

For compliance purposes, CompMusic Lab (“we” or “us”) is the data controller of demographic data and
audio recordings we hold about you, and you have a right to request information about that data from us
(including to access and verify that data). We would like your informed consent to hold and publish
demographic data and recordings that you provide to us. All such data will be treated by us under agreed
license terms. Please tick the appropriate boxes if you agree and then sign this form:

I agree for my data (audio recordings, written transcriptions, and demographic information [language, city language
learned, and biological sex and birth year if provided]) to be used as part of research.
I agree to provide my audio recordings and text annotations within 2 months of the Stage 1 protocol’s In Principle
Acceptance, and to check/correct the final annotated files within 2 months of their preparation.
I agree to publish my data under   a CC BY-NC 4.0 non-commercial open access license.

a. (If you do not agree to publish your data under CC BY-NC 4.0 [e.g., for reasons relating to Indigenous data
sovereignty]) please state your conditions for sharing your audio recording data.:_______________

I agree to be a coauthor of the manuscript.
I agree for a preprint of the manuscript and accompanying data to be posted to recognized preprint/data servers (e.g.,
PsyArXiv, Open Science Framework, Zenodo).

If you would like to waive the honorarium, you can also tick this box. If you do not waive the honorarium, we will contact you
separately to provide bank account details for the wire transfer after you have provided all data.

I choose to waive the honorarium

Name: ___________________________________________________________________
Affiliation (e.g., Department, University, Country): ___________________________________
1st/heritage language(s) spoken: ______________________________________________
Primary city/town/village(s) where language(s) were learned: ____________________________
[Optional] Biological sex (e.g., male, female, non-binary, etc.):___________________________
[Optional] Birth year: ______________________________________________________________

https://creativecommons.org/licenses/by-nc/4.0/
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd
https://docs.google.com/document/d/1ayBI7bMCodi4iJ5cC8-3MfTfDrp5uAkt/edit#bookmark=id.23ckvvd


OPEN CALL FOR COLLABORATION TO THE INTERNATIONAL COUNCIL FOR
TRADITIONAL MUSIC (ICTM) EMAIL LIST

Adapted versions of this email were also used later in tandem with in-person recruitment at the
conferences described in the main text). Note that in later meetings we decided to relax the
restriction of one collaborator per language, in part due to difficulties of defining the boundaries
separating languages and the desire to maximize inclusion.

From: Patrick Savage <psavage@sfc.keio.ac.jp>
Subject: Call for collaboration on global speech-song comparison
Date: July 15, 2022 9:49:57 JST
To: "ictm-l@ictmusic.org" <ictm-l@ictmusic.org>

Dear ICTM-L members,

I am emailing to inquire if any of you are interested in collaborating on a project comparing
speech and song in diverse languages around the world to determine what, if any,
cross-culturally consistent relationships exist.

I mentioned this project briefly back in January in response to the discussion about Don Niles’
post to this list entitled “What is song?”. Since then, we have recruited several dozen
collaborators speaking diverse languages (see attached rough map), but would like to open up
the call to recruit more. As you can see from the map, our current recruitment is quite
unbalanced, particularly lacking speakers of indigenous languages of the Americas, Oceania,
and Southeast Asia. We hope you can help us correct that!

Collaborators will be expected to make short (~30 second) audio recordings of themselves in
four ways:
1) singing a traditional song in their native language
2) reciting the lyrics of this song in spoken form
3) describing the meaning of the song in their native language
4) performing an instrumental version of the song’s melody on an instrument of their choice
(negotiable)
They will also provide written transcriptions of these recordings, segmented into acoustic units
(e.g., syllables, notes) and English translations. Later, they will check/correct versions of these
recordings created by others with click sounds added to the start of each acoustic unit. Finally,



they will help us interpret the results of acoustic comparisons of these recordings/annotations.
Our pilot studies suggest that this should all take 2-4 hours for one set of 4 recordings.

Collaborators will be coauthors on the resulting publication, and will also be paid a small
honorarium (pending the results of funding applications). In principle, all audio recordings will
be published using a CC BY-NC non-commercial open access license, but exceptions can be
discussed on a case-by-case basis (e.g., if this conflicts with taboos or policies regarding
indigenous data sovereignty).

We seek collaborators aged 18 and over who are native speakers of diverse languages, but we
are open to collaborators who are non-native speakers in cases of endangered/threatened
languages where there are few native speaker researchers available. During this first stage, we
only plan to recruit one collaborator per language, on a first-come first-served basis in principle
(in future stages we will recruit multiple speakers per language).

More details and caveats (e.g., how to interpret “traditional” or “song") can be found in a draft
protocol here:
https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM
/edit

We actually are not quite ready to begin the formal recording/analysis process yet as we are still
working out some methodological and conceptual issues (for which we would also welcome
your contributions). The reason I am putting out this call now is that I will be presenting at ICTM
in Lisbon next week and I know many of you will also be there, so I wanted to use this chance to
reach out in case any of you want to meet and discuss in person in Lisbon.

I’ll be mentioning more details about this project briefly during a joint ICTM presentation on
"Building Sustainable Global Collaborative Networks” at 9am on July 26th (Session VIA01), and
would be delighted to meet anyone interested in collaboration following this session or at any
other time during the week of the conference.

Please email me (mentioning your native language[s]) if you’re interested in collaborating or in
meeting in Lisbon to discuss possibilities!

Cheers,
Pat
---
Dr. Patrick Savage (he/him)
Associate Professor
Faculty of Environment and Information Studies
Keio University SFC (Shonan Fujisawa Campus)
http://compmusic.info

https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM/edit
https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM/edit
https://docs.google.com/document/d/1qICFXwew7OEj06dkSoR59TlF7HCmVGcudkenMwHRemM/edit
https://ictmusic.org/ictm2022/programme
https://ictmusic.org/ictm2022/programme
http://compmusic.info/


LIST OF SONGS, INSTRUMENTS, AND LANGUAGES
NB: Heritage speakers are indicated using italics, all others speak the language as their 1st
language.

# Name Song title
(Romanization)

Language
(italics = heritage speaker)

Instrument

1 Nori Jacoby Laila Laila Modern Hebrew [Jerusalem] Whistle

2 Limor Raviv זהבשלירושלים
(Yerushalayim
ShelZahav)

Modern Hebrew [Tel Aviv] Tapping

3 Iyadh El Kahla منيغارواالليلاموني Tunisian Arabic Aerophone

4 Utae Ehara イタサン (Itasan) Aynu (Hokkaido Ainu) Tapping

5 Neddiel Elcie
Muñoz Millalonco

Ñaumen pu llauken Tsesungún (Huilliche) Clapping

6 Nozuko Nguqu Ulele IsiXhosa (Xhosa) Piano

7 Mark Lenini
Parselelo

Lala Mtoto Lala Kiswahili (Swahili) Tapping

8 Cristiano Tsope Hiya Tlanguela
xinwanana xinga
pswaliwa namuntla

Ronga Clapping

9 Florence Nweke Pat omo o Yoruba Piano

10 Adwoa Arhine Yɛyɛ Eguafo Fante (Akan) Clapping

11 Jehoshaphat Philip
Sarbah

Daa na se Twi (Akan) Piano

12 Latyr Sy Mbeuguel Wolof Clapping

13 I Putu Gede
Setiawan

Putriceningayu Balinese Suling

14 Suzanne Purdy Pōkarekare Ana Te Reo Māori (Māori)
[Auckland]

Tapping

15 Rob Thorne Ko Te Pū Te Reo Māori (Māori)
[Wellington]

Kōauau rākau

16 Nerea Bello
Sagarzazu

Xoxo Beltza Euskara (Basque)
[Hondarribia]

Aerophone

17 Urise Kuikuro Toló Língua Kuikuro
(Kuikúro-Kalapálo)

Clapping



18 Shantala Hegde Moodala Maneya Kannada Clapping

19 Rytis Ambrazevičius Sėjau rugelius Lithuanian Idiophone

20 Tadhg Ó Meachair Éiníní Gaeilge (Irish) Piano Accordion

21 Niels Chr. Hansen I Skovens Dybe Stille
Ro

Danish Piano

22 Mark van Tongeren Hoor De Wind waait Dutch [Heemstede] Piano

23 Kayla Kolff Dikkertje Dap Dutch [Nairobi] Membranophone

24 Adam Tierney Simple Gifts English [Indiana] Electric Piano

25 Christina Vanden
Bosch der
Nederlanden

Sleep Now Rest Now English [Michigan] Cello

26 Patrick Savage Scarborough Fair English [Nevada] Piano

27 John McBride Arthur McBride English [Newry] Flute

28 William Tecumseh
Fitch

Rovin’ Gambler English [Pennsylvania] Guitar

29 Peter Pfordresher America the Beautiful English [Washington D.C.] Piano

30 Yannick Jadoul VandaagIs't Sinte
Maarten

Flemish (Dutch) Piano

31 Felix Haiduk Die Gedanken Sind Frei German Melodica

32 Ulvhild Færøvik Nordmannen Norwegian Clapping

33 Daniel Fredriksson Ho Maja Svenska (Swedish) Offerdalspipa

34 Emmanouil Benetos Saranta Palikaria Greek Clapping

35 Dhwani P. Sadaphal Saraswatee
maateshwaree

Hindi Harmonium

36 Parimal M.
Sadaphal

Sukhakartaa Marathi Sitar

37 Meyha Chhatwal ਬਾਜਰੇ ਦਾ ਿਸੱਟਾ (Bajre Da
Sitta)

Punjabi (Eastern Panjabi) Harmonium

38 Ryan Mark David Dil Dil Pakistan Urdu Acoustic guitar

39 Shahaboddin
Dabaghi
Varnosfaderani

Morgh e Sahar Western Farsi [Isfahan] Clapping



40 Shafagh Hadavi Mah Pishanoo Western Farsi [Tehran] Piano

41 Manuel
Anglada-Tort

La Presó de Lleida Catalan Piano

42 Pauline
Larrouy-Maestri

À la claire fontaine French Piano

43 Andrea Ravignani Bella Ciao Italian Saxophone

44 Violeta Magalhães O milho da nossa terra Portuguese [Porto] Tapping

45 Camila Bruder A Canoa Virou Portuguese [São Paulo] Tambourine

46 Marco Antonio
Correa Varella

Suite do Pescador Portuguese [São Paulo] Nose flute

47 Juan Sebastián
Gómez-Cañón

El pescador Spanish [Bogotá] Guitar

48 Martín Rocamora Aquello Spanish [Montevideo] Guitar

49 Javier Silva-Zurita Un gorro de lana Spanish [Santiago] Guitar

50 Ignacio Soto-Silva El Lobo Chilote Spanish [Osorno] Clapping

51 Dilyana Kurdova Zarad tebe, mome, mori Bulgarian Clapping

52 Aleksandar
Arabadjiev

Jovano Macedonian Kaval

53 Wojciech
Krzyżanowski

Wlazł Kotek Na Płotek Polish Guitar

54 Polina Proutskova Dusha moia
pregreshnaia

Russian Violin

55 Vanessa Nina
Borsan

En Hribček Bom Kupil Slovenian Tapping

56 Olena Shcherbakova Podolyanochka Ukrainian Piano

57 Diana Hereld ᎤᏁᎳᏅᎯ ᎤᏪᏥ
(unelanvhi uwetsi)

Cherokee Tapping

58 Gakuto Chiba 津軽よされ節
(Tsugaru-yosarebushi)

Japanese [Hokkaido] Tsugaru-shamisen (津
軽三味線)

59 Shinya Fujii デカンショ節
(Dekansho-bushi)

Japanese [Hyogo] Clapping

60 Yuto Ozaki 大森甚句
(Omori-Jinku)

Japanese [Tokyo] Guitar



61 Naruse Marin 朝花節
(Asabana-bushi)

Northern Amami-Oshima Sanshin (三線)

62 Teona Lomsadze Nana (Lullaby) Georgian Chonguri

63 Sangbuem Choo 아리랑 (Arirang) Korean Guitar

64 Patricia Opondo Ero Okech Nyawana Luo (dholuo) (Luo (Kenya
and Tanzania))

Whistle

65 Rogerdison
Natsitsabui

Jakara Wata Rikbaktsa Clapping

66 Jakelin Troy Gundji gawalgu yuri Ngarigu Percussion

67 Tutushamum Puri
Righi

Petara Puri Kwaytikindo (Puri) Terara (bamboo flute)

68 Su Zar Zar Mya Man Giri Myanmar (Burmese) Saung-gauk

69 Psyche Loui 梁祝 (Butterfly Lovers) Cantonese (Yue Chinese) Violin

70 Minyu Zeng 五指山歌 (The Song of
the Five-Fingers
Mountain)

HainanHua (Min Nan
Chinese)

Idiophone

71 Fang Liu 送别 (Farewell) Mandarin Chinese Clapping

72 Great Lekakul ลาวดวงเดือน (Lao Doung
Duan)

Thai "Klui"(ขลุย่) (a Thai
flute)

73 Brenda Suyanne
Barbosa

Apykaxu Mbyá-Guaraní Clapping

74 Polina
Dessiatnitchenko

Ay Lachin North Azerbaijani Tar

75 Olcay Muslu Uzun Ince Bir Yoldayim Turkish Tapping
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